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INTRODUCTION 
Along the southeast Baltic Sea coast, quartz- and feldspar-rich 

sands contain variable amounts (1-8%) of heavy minerals, such as 

garnet, rutile, zircon, magnetite, ilmenite, hornblende, and other 

accessory components (Linčius, 1966). In addition to provenance 

analysis, nature and distribution of heavy-mineral concentrations 

(HMCs) has been widely used by sedimentologists and 

geomorphologists to identify sedimentary environments, 

oceanographic and morphologic trends (Cascalho and Taborda, 

2004; Dubois, 2012), past extreme oceanographic events (Babu et 

al., 2007; Jagodziński et al., 2009; Vijayalakshmi et al., 2010; 

Nair et al., 2011; Buynevich et al., 2011), lithological marker 

horizons and paleo-wind proxies (Buynevich et al., 2007a), and 

general coastal dynamics (Frihy and Komar, 1993).  

From one site on the beach the heavy mineral take place where 

the intensity of the swash is adequate to promote hydraulic grain 

sorting processes that lead to the concentration of heavy particles 

(Komar and Wang, 1984; Komar, 1989; Eitner, 1995; Cascalho 

and Taborda, 2004). In a recent study, HMC trends as a function 

of wind regime (Mange and Wright, 2007) and gravitation forces 

have been described at several sites along the Lithuanian coast 

(Pupienis et al., 2011).  

Many authors noticed that HMCs form as a consequence of 

storm reworking accompanied by erosion of the beach and 

foredune (Rao, 1957; Žaromskis, 1982; Komar and Wang, 1984; 

Hamilton and Collins, 1998; Smith and Jackson, 1990; Linčius, 

1991; Buynevich et al., 2007b). Many previous studies on heavy 

mineral distribution involved analysis of short beach sections in 

order to assess their economic viability for mining (Linčius, 1965; 

Linčius, 1966; Ludwig and Figge, 1979; Kurian et al., 2000; 

Aboudha, 2003; Behera, 2003) and to determine their genesis 

(Pustelnikov and Stauskaitė, 1979; Linčius, 1991; Eitner, 1995; 

Cascalho and Taborda, 2004).  

This paper presents the results of field research carried out 

along the Baltic Sea beaches of the Curonian Spit, Lithuania 

during a relatively calm hydro-meteorological (summer) period. 

The aims of this paper are to report the first comprehensive 

assessment of HMC occurrence along this stretch of the coast and 

to examine the factors controlling their distribution. 

 

PHYSICAL SETTING 
The study region is located along the Baltic Sea coast of 

Lithuania (Figures 1a and 1b). The Curonian Spit, a UNESCO 

World Heritage Site, is a 98 km-long and 0.4-4.0 km width barrier 

  

ABSTRACT 
 

 

Pupienis, D., Buynevich I.V., Jarmalavičius, D., Žilinskas, G., and Fedorovič, J., 2013. Regional distribution of Heavy-

mineral concentrations along the Curonian Spit coast of Lithuania In: Conley, D.C., Masselink, G., Russell, P.E. and 

O’Hare, T.J. (eds.), Proceedings 12
th
 International Coastal Symposium (Plymouth, England), Journal of Coastal 

Research, Special Issue No. 65, pp. 1844-1849, ISSN 0749-0208. 

 

Heavy-mineral concentrations (HMCs) in coastal sands serve as important indicators of hydrometeorological and 

sedimentological conditions. Along the southeast Baltic Sea coast, quartz- and feldspar-rich sands contain variable 

amounts (1-8%) of heavy minerals, such as garnet, rutile, zircon, magnetite, ilmenite, hornblende, and other accessory 

minerals. Their concentrations are found along the Baltic Sea coast of the Curonian Spit, a 98-km-long barrier divided 

between the Russian Federation (47 km) in the south and the Republic of Lithuania (51 km) in the north. The open sea 

beach sites range from 25 to 80 m in width and are backed by 5-16 m height foredunes. To examine the patterns in 

HMC distribution, a total of 303 surface sand samples were collected from the middle of the beach, foredune toe, and 

stoss slope at 500 m intervals along the entire length of the Lithuanian section. To characterize the relative 

concentrations of heavy minerals (especially ferrimagnetic), a Bartington MS3 field scanning sensor was used for rapid 

and effective measurements of low-field volume magnetic susceptibility (MS). Along the Baltic Sea beach, in-situ MS 

values of κ < 50 μSI of background quartz-rich sands contrast with κ > 150 μSI in surface HMCs. On the beach, MS 

averages 38 μSI , whereas on the foredune toe and stoss slope they decrease to 33 and 26 μSI  respectively. 

Furthermore, alongshore variations in beach HMC characteristics follow a cyclic pattern with a wavelength of 

approximately 10 km. This pattern is likely related to wave runup during major storms, whereas on the foredune toe and 

stoss slope, HMCs reflect the secondary reworking by aeolian processes. Along the sectors with higher MS, coastal 

erosion processes dominate (Pervalka-Nida), whereas low values generally correspond to regions of sand accumulation 

(Kopgalis-Pervalka). Therefore, surficial HMCs have the potential for characterizing long-term patterns of regional 

distribution of hydrodynamic energy along drift-aligned sandy coasts. 

 

ADDITIONAL INDEX WORDS:  Heavy mineral concentrations, magnetic susceptibility, sand, distribution, beach, 

Curonian Spit. 

www.JCRonline.org 

____________________ 

DOI: 10.2112/SI65-312.1 received 07 December 2012; accepted 06 

March 2013. 
© Coastal Education & Research Foundation 2013 

 

www.cerf-jcr.org 

 

../../../../../../Users/CMakowski/AppData/Local/Temp/www.JCRonline.org
http://www.cerf-jcr.org/


 

 

Journal of Coastal Research, Special Issue No. 65, 2013 

 Regional Distribution of Heavy-mineral Concentrations along the Curonian Spit Coast of Lithuania 1845 

Spit (Gudelis, 1998) divided between Russian Federation (47 km) 

in the south and Lithuanian (51 km) in the north. this time on a 

sandy barrier.  

The study spans the 50.5-km-long coastal strip from Kopgalis to 

Nida (Figure 1c). The open sea beach sites range from 25 to 80 m 

in width and elevation of foredune toe ranged from 2.6 to 4.3 m 

above mean sea level, with an average beachface gradient of 0.073 

(~4.2°) and backed by 5-16-m-high foredunes (Jarmalavičius et 

al., 2012a). The beach consists predominatly of medium and 

coarse quartzoze sand which a mean grain size is 0.30 mm.  

In the study area, three sections with different morpho-

lithological characteristics are distinguished: Northern (Kopgalis – 

Juodkrantė), Central (Juodkrantė – Pervalka) and Southern 

(Pervalka – Nida; Figure 1). 

The Northern section from Kopgalis to Juodkrantė stretches up 

to 19 km (profiles 1-39). It is characterized by the widest beach 

sites and the highest foredunes. An average beach width and 

elevation are 45 m and 3.6 m, respectively (Figure 1d) with an 

average beachface gradient of 0.08 (~4.6°) and an average 

foredune elevation of 13 m. The mean grain size of surface 

sediments in this section is 0.23 mm. 

The central 9 km-long section (40-56 profile) (Figure 1e) is 

marked by the narrowest beach sites (average 35m width) and the 

lowest foredunes (an average elevation – 8.0 m). Juodkrantė – 

Pervalka section has the highest beach sites elevation of 3.9 m on 

average, where an average beachface gradient rises up to 0.11 

(~6.3°). A mean grain size of surface sediments is 0.33 mm. 

In the Southern (57-101 profile) 23 km-length section, 

Pervalka-Nida, an average beach site width is 40 m, elevation – 

3.6 m, and slope – 0.09 (~5.2°). An average foredune elevation 

does not exceed 9.5 m (Figure 1f). The sector has an average grain 

size of 0.31 mm. 

Due to the fact that the Baltic Sea is non-tidal, wind-generated 

waves are the main beach-forming factor. During the fieldwork in 

3-5 August 2011, the mean wave height was 35 cm, with a mean 
sea level of +7.0 cm. Through the sampling period, the wind speed 

 

Figure 1. Location of the study area along the Curonian Spit coast of the Baltic Sea. Numbers in legend: 1 – settlements, 2 – magnetic 

susceptibility (MS) profiles, 3 – morpholithological section boundary. Morpho-lithological sections: (d) – Northern (Kopgalis – 
Juodkrantė), (e) – Central (Juodkrantė – Pervalka), (f) – Southern (Pervalka – Nida). 
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increased from 1.8 to 2.8 m/s and direction changed from SW to 

SE (hydrometeorological data from the Department of Marine 

Research, Klaipėda). In the summer (July-August) prevailing 

westerly winds attain speed of 4.2 m/s. The wave mean height 

(Hmean) and wave period (Tp) is 0.65 m and 5.8 s respectively 

(hydrological data from the Department of Marine Research, 

Klaipėda). The dominant SW, W wave’s direction (Kelpšaitė and 

Dailidienė, 2011) causes a predominant sediment transport along 

the Lithuanian coast from south to north (Kirlys, 1965; Gudelis, 

1998). 

METHODS 
During the study period, a total of 303 surface sand samples were 

collected from 101 profiles at 500 m intervals along the entire 

length of the Lithuanian section (Figure 1c.). Along each transect, 

sediment samples were obtained from the middle of the beach, 

foredune toe (base), and stoss slope (seaward flank) of the 

foredune. A single, discrete sample collected from one location at 

one point in time. The sand samples were taken from the “active“ 

layer (upper 5 mm). This strategy ensures that only sediments 

representing the current hydrometeorological conditions are 

reflected in the analysis (Aboudha, 2003). Georeferencing was 

provided by a hand-held GPS system. 

The assessment of the degree of heavy-mineral concentration in 

beach sand employed involved both in situ measuremnets and 

laboratory analysis of ferrimagnetic (e.g., magnetite) and 

paramagnetic mineral concentration in diamagnetic quartz-rich 

background sands (see Shankar et al., 1996; Pupienis et al., 2011). 

A Bartington MS3 field scanning sensor was used for rapid 

measurements of low-field volume (κ, μSI) magnetic 

susceptibility (MS). The results below are based on laboratory MS 

analyses of the surface samples. The Curonian Spit sea shoreline 

change rate data is based on comparative analysis of cartographic 

material, i.e. topographic maps from 1910 to 1991 as well as 

orthophotos created from 1997 to 2010 (Pupienis et al., 2012). 

Rates of shoreline change were generated within ArcMap version 

10.1 using the Digital Shoreline Analysis System (DSAS) version 

4.3, an ArcGIS tool developed by the USGS (Thieler et al., 2009). 

Shoreline change rates were calculated using linear regression rate 

(LRR), as confidence interval was 95%. The reference point of 

shoreline change rate was shoreline position chosen as for 1910. 

 

RESULTS 
The analysis of MS values revealed a number of differences 

between heavy-mineral content in the middle of the beach, and 

foredune toe and stoss slope. The mid-beach MS values fluctuate 

 

Figure 2. Magnetic susceptibility (MS) of surface sand layer along the Baltic Sea coast of the Curonian Spit: (a) – mid-beach, (b) – 

foredune toe, (c) – stoss slope. (See Figure 1c for profile locations). 
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within a wide interval (from κ=11.9 to 113.7 μSI), with a standard 

deviation (σ) of 19.5 μSI. This sample suite lacks a distinct 

alongshore MS trend, but exhibits a general cyclic pattern with a 

wavelength of approximately 10 km (Figure 2a)  

For the toe of the foredune, MS values range within a similar 

interval to the middle of the beach (from 5.2 to 102.5 μSI; σ =21.9 

μSI (Figure 2b) A more pronounced alongshore trend 

characterizes foredune toe and stoss slope, where MS values 

decrease from south to north (from Nida to Kopgalis). Meanwhile, 

on the stoss slope, the amplitude of changes in MS values is half 

that of the dune base. MS values range from 5.9 to 62.1 μSI 

(σ=13.0 μSI; Figure 2c). In shore-normal profile, the highest κ 

values occur in the middle of the beach, with a decrease by a 

factor of 1.5 on the stoss slope. Average MS values are as follows: 

middle of the beach: 37.6 SI; foredune toe; 32.5 SI, and the 

dune slope: 25.9 SI. 

 Greater differences in the average MS value are revealed in 

Northern, Central, and Southern sections. Average MS values are 

as follows: Northern section – 26.4 SI; Central section – 28.8 

SI, and Southern section – 38.0 SI (Figure 3). In the Northern 

and  

Central sections, an average MS value decreases from the 

middle of the beach to the stoss slope (Figures 3a and 3b). In the 

Southern section, the maximum of an average MS value occurs at 

the foredune toe (43.4 SI), with the minimum on the stoss slope 

(32.9 SI), similar to the Northern (18.5 SI) and Central (24.3 

SI) sections (Figure 3).  

The smallest distribution differences of an average MS value 

among all sections were identified in the middle of the beach (0.5 

SI), and the greatest – at stoss slope (14.4 SI) and foredune toe 

(20.2 SI). 

DISCUSION 
Differences in the nature of the bulk heavy-mineral content 

along the beach and adjacent foredune sections can be explained 

 
Figure 3. Magnetic susceptibility (MS) of the surface sand layer 

in three sections: (a) – Northern, (b) – Central, (c) – Southern. 
Dotted line – average MS value. 

 
Figure 4. Shoreline change rate (solid red line) during the 1910-

2010 observation period (Pupienis et al., 2012) and magnetic 

susceptibility () of sand (solid line with dots): (a) – mid-beach, 

(b) – foredune toe, (c) – stoss slope. Morpholithological section 

boundary (dotted green line) (See Figure 1c for profile and 

section locations). 
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by a combination of hydro-meteorological factors, such as wave 

runup onto the Baltic Sea beaches (Dolotov and Stauskaitė, 1970) 

and primary or secondary reworking by wind on the upper beach 

and foredune (Linčius, 1966; Pupienis et al., 2011). Since the 

main source of heavy minerals is the the Sambian peninsula 

(Figure 1b) and Yantarny amber mines (Lukoševičius, 1972; 

Kairytė et al., 2005), the occurrence of HMCs decreases from 

south to north (Figure 2) with increasing distance from their 

source. The alongshore decrease can be also explained by 

reduction in wave energy in the direction of transport (Kirlys, 

1968). HMC magnitude is a combination of distance from source 

and degree of winnowing/energy input. 

According to Komar (1989), regardless of the mean grain size, 

heavy minerals are typically found in the fine-to-medium fraction 

of a particular sand horizon. The study demonstrates that higher 

average MS values prevail in Central and Southern sections, 

which are characterized by 0.31-0.33 mm fraction. Along the 

Curonian spit, the heavy minerals are concentrated in erosional 

Southern and the adjacent Central zones, which are in a 

hydrodynamic equilibrium (Kirlys, 1968; Komar and Wang, 1984; 

Linčius, 1991).  

It is worth noting the high degree of variability in heavy-mineral 

content along the mid-beach section may be also affected by 

episodes of minor storminess (Kirlys, 1964; Žaromskis, 1982; 

Komar and Wang, 1984; Linčius, 1991). Heavy-mineral 

concentrations are formed by wave-generated winnowing of the 

lighter fraction and longitudinal (alongshore) sediment transport 

(Slingerland, 1977) along the Curonian Spit from south to north 

(Linčius, 1991). Beach cusps formed by edge waves may explain 

local (10s of meters) HMC variations, but with consistent 

sampling strategy, the large-scale signal argues for regional 

trends.The mid-beach HMCs are then reworked, and often 

accentuated, due to aeolian transport toward the foredune 

(Jarmalavičius et al., 2012b). Since the effect of wind is weaker 

than that of waves, the bulk of denser minerals is accumulated 

along the foredune toe. Similarly, Linčius (1991) concluded that 

the greatest heavy-mineral concentration takes place on foredune 

toe (Komar and Wang, 1984; Komar, 1989; Hugues et al., 2000).  

Therefore, if only textural analysis is used, the presence of 

HMCs in beach samples may mislead the assessment of short-term 

trends in longshore sediment patterns. In contrast, the foredune 

HMCs are formed largely without any major fluctuations and 

better reflect the general patterns of heavy-mineral distribution 

along the coast. The present dataset demonstrates that key 

shoreline dynamics rate are reflected in the MS values on foredune 

toe and stoss slope (Figures 4b and 4c). The calculated correlation 

coefficients between MS values and shoreline change rate showed 

that the weakest correlation is in mid-beach (r = –0.11), stronger 

on stoss slope (r = –0.22) and the strongest on foredune toe (r = –

0.27). 

An important finding of our study is the general increase in MS 

values in coastal sections dominated by erosion, with lower values 

characteristic of the accumulation zones (Figure 4; Rao, 1957; 

Komar and Wang, 1984; Frihy and Komar, 1991; Pupienis et al., 

2011).  

The residence time of heavy-mineral assemblages in the 

nearshore zone during periods of lower sea level has not been 

investigated, but is expected to reflect the general trends of 

northerly decrease noted above. 

CONCLUSIONS 
Heavy-mineral content of the surface beach sands are dependent 

upon ambient wave and wind conditions, with aeolian dynamics 

dominating the foredune sectors. Thus any changes in 

hydrodynamic conditions may be reflected in surface HMCs. It 

should be noted that due to the increased waves energy, the spatial 

and temporal shifts in beach HMCs may be masked by short-term 

fluctuations. Because aeolian processes are weaker than wave-

induced bottom stresses, only a small fraction of heavy minerals is 

transported from the beach to foredune (with maximum 

accumulation at the foredune toe). For this reason, short-term 

mineralogical patterns on the foredune are time-averaged and 

reflect prevailing long-term hydrodynamic conditions. Therefore, 

heavy-mineral distribution patterns along the Curonian Spit and 

their dependence on shoreline dynamics are best manifested at the 

base of the foredune, highlighting the potential for reconstructing 

past changes in coastal dynamics through the study of buried 

foredune HMC horizons. 
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